LBC2403-1206EB

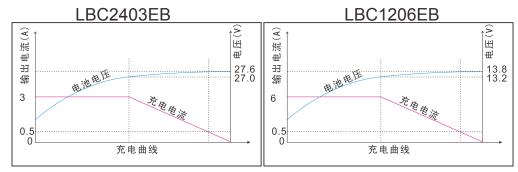
系列蓄电池充电器使用说明

Ver1.1 Date: 2020/12/30

版本发展历史

日期	版本	内容
2020-11-15	1.0	开始发布
2020-12-30	1.1	细节修改

1. 概述

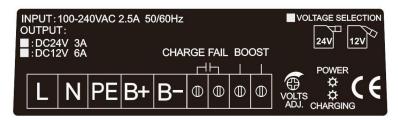

LBC 系列蓄电池充电器是一款采用最新开关电源方案,并专门针对发动机起动用的铅酸蓄电池充电特性而设计,适合铅酸电池长期补充充电(浮充),可根据选型表选择合适的充电器。

型号	输出电压	输出电流	充电失败报警	BOOST 升压输出
LBC2403E	24V	3A		
LBC2403EB	24V	3A	•	•
LBC1206E	12V	6A		
LBC1206EB	12V	6A	•	•
LBC2403-1206E	24V、12V 双电压输出	24V 输出 3A		
	240、120 双电压制山	12V 输出 5A		
LBC2403-1206ER	24V、12V 双电压输出	24V 输出 3A		
LBC2403-1200EB	244、124 双电压制工	12V 输出 5A	•	•

2. 性能特点

- ❖ 12V/24V 电压选择功能,采用进口高品质拨码开关切换,更加可靠稳定,轻松拨动开关即可选择。
- ❖ 采用开关电源式结构,输入交流电压范围宽、体积小、重量轻、效率高。
- ❖ 采用多阶段充电法(恒压、恒流、涓流浮充、充满自停)自动充电,充分按照蓄电池充电特性进行 充电,可防止铅酸蓄电池过充,能最大程度提高电池寿命。
- ❖ 具有过流、短路、接反极性保护功能。
- ❖ 具有充电失败告警输出(继电器无源触点),更加方便安全。
- ❖ 充电电压可在现场通过电位器调节。
- ❖ BOOST 升压功能,短路 BOOST 端口可将输出电压提升(24V 档升 1V,12V 档升 0.5V),可以补偿冬季充不满问题,也可以更好的给老旧蓄电池充电。
- ❖ 24V 输出时适用于 24V 蓄电池组充电,额定充电电流为 3A。
- ❖ 12V 输出时适用于 12V 蓄电池组充电,额定充电电流为 6A。
- ❖ 充电状态 LED 指示: 电源指示 (绿色), 充电指示 (红色)充满灯灭。

3. 充电原理


按照蓄电池充电特性进行充电,采用二阶段充电法。第一阶段充电模式是"恒流模式",即在蓄电池的端电压低于预设值前,充电为恒流充电;第二阶段充电模式是"浮充模式",即在蓄电池的端电压高于预设值后,充电电流随蓄电池的端电压升高而逐渐减小,此时充电转为浮充充电。当充电电流小于 0.5A,电池端电压也逐渐升高达到预设恒压值时,电池已基本充满(充电指示灯灭),此后充电电流仅抵消蓄电池的自放电,且长时间充电也对电池无害,即充电器既可维持蓄电池的充满状态,又能确保蓄电池的使用寿命。

4. 参数规格

	项目		参数		
	标称交流输入电压范围	AC (100~240)V			
输入特性	最大交流输入电压范围	AC (95~280)V			
	交流频率	50Hz/60Hz			
	空载功耗	<3W			
	效率	>80% @AC 110V			
	<i>X</i> +	>84% @AC 220V			
	 最大输入有功功率	LBC2403E	LBC1206E		
	取八個八百のの千	130W	130W		
	最大输入电流	2.5A	2.5A		
	空载输出电压	27.6V,误差±1%	13.8V,误差±1%		
輸出特性	额定充电电流	3A,误差±2%	6A,误差 ±2 %		
	额定输出功率	86W	86W		
报警输出	继电器触点	0.5A/250VAC			
	绝缘电阻	输入与输出、输入与外壳均为,DC500V 1min RL≥500MΩ			
绝缘性能	绝缘电压	输入与输出,输入与外壳均为 AC1500V 50Hz 1min 漏电流 IL ≤ 3.5mA			
	工作温度	(-30~55)°C			
-	储存温度	(-40~85)°C			
工作环境	工作湿度	20%RH~93%RH(无凝露)			
	储藏湿度	10%RH~95%RH(无凝露)			
	重量	0.63kg			
外形结构	尺寸	100mm×130mm×60mm (长×宽×高)			

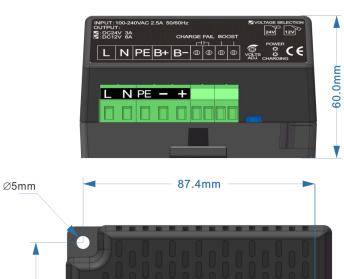
由于低于输入电压时效率会稍低,请注意输入小于 AC100V 时需减额操作。

5. 操作说明

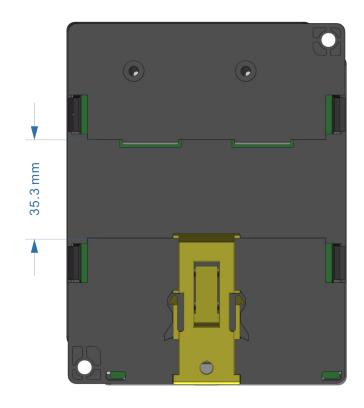
- 5.1. 端子 L、N 接交流(100-240) V, 用 BVR1mm² 多股铜线。
- 5. 2. 端子 PE 接地线,用 BVR1mm² 多股铜线。
- 5.3. 端子 B+接电池+, B- 接蓄电池-, 用 BVR1.5mm² 多股铜线。
- 5.4. 端子 CHARGE FAIL 充电失败输出端口。
- 5. 5. BOOST 升压端口,短路 BOOST 端口可将输出电压提升 1.0V,在冬季也可以充满电池。 使用建议,气温低于 10℃时可以短路此端口,蓄电池老化后可以考虑短路此端口。
- 5.6. POWER: 电源指示灯, 当充电器正常工作时点亮。
- 5.7. **CHARGING**: 充电指示灯,当充电电流大于 0.5A 时点亮,当充电电流小于 0.5A 时,充电指示灯熄灭。
- 5.8. **VOLT**: 充电电压调节电位器,在现场调节电压时,需将电池从充电器上断开,一边测量充电器输出电压,一边调节电压电位器(**VOLT**),直到调到合适电压。

建议:12V 蓄电池的浮充电压在 13.8V,24V 蓄电池的浮充电压在 27.6V。出厂已经是按此调节 并校准,非专业人员不要随意调节。

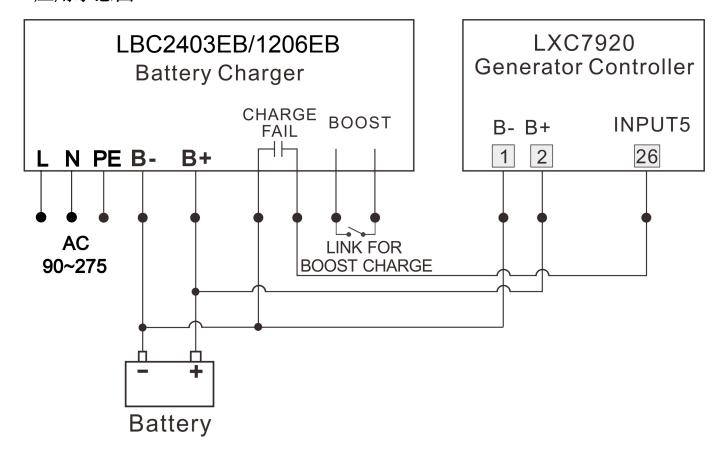
- ◇ 注:1)此充电器内部输出接有二极管和限流电路,因此充电器可以和发动机上的充电发电机并联使用,在起动时不需要断开充电器。
 - 2) 在发电机组上应用时,因充电电流较大,会在充电线上产生压降,因此建议将充电线单独接 到电池端子上,以免影响传感器采样精度。

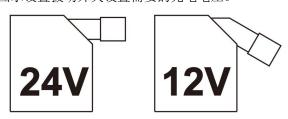

6. 外形及安装尺寸

一、螺丝安装:


开孔尺寸: ∅ 5mm 安装尺寸 87.4mm*117mm

二、导轨安装


适用于 35MM 宽导轨。



7. 应用示意图

8. 充电电压选择

按图示设置拨动开关设置需要的充电电压。

